3,241 research outputs found

    Growth and formation of the foreleg skeleton inbred mice and rats under conditions of hypo-, normo- and hyperdynamia

    Get PDF
    Inbred 1 month old males of C57B 1/6, CBA, CC57Br/Mw interlinear hybrid mice of the first generation and rats of the August and Wistar lines were subjected to conditions of hypo-, normo- and hyperdynamia for 2 months. The statistically reliable dependence is shown between mechanical underloadings and overloadings and macro microscopic changes in the hind limb skeleton of animals. Genetic determination of growth and formation of the forelimb skeleton is established. Hereditary susceptibility and the phenomenon of heterosis are preserved under all motor conditions

    Refining the Proof of Planar Equivalence

    Full text link
    We outline a full non-perturbative proof of planar (large-N) equivalence between bosonic correlators in a theory with Majorana fermions in the adjoint representation and one with Dirac fermions in the two-index (anti)symmetric representation. In a particular case (one flavor), this reduces to our previous result - planar equivalence between super-Yang--Mills theory and a non-supersymmetric ``orientifold field theory.'' The latter theory becomes one-flavor massless QCD at N=3.Comment: 15 pages, Latex. 6 figures. v2: Comments and refs. added. v3: ref.[9] corrected. To appear in Phys.Rev.

    Analytic solution for kinetic equilibrium of beta-processes in nucleonic plasma with relativistic pairs

    Full text link
    The analytic solution is obtained describing kinetic equilibrium of the β\beta-processes in the nucleonic plasma with relativistic pairs. The nucleons (n,p)(n,p) are supposed to be non-relativistic and non-degenerate, while the electrons and positrons are ultra-relativistic due to high temperature (T>6109(T>6\cdot 10^9K), or high density (ρ>μ106(\rho>\mu 10^6g/cm3^3), or both, where μ\mu is a number of nucleons per one electron. The consideration is simplified because of the analytic connection of the density with the electron chemical potential in the ultra-relativistic plasma, and Gauss representation of Fermi functions. Electron chemical potential and number of nucleons per one initial electron are calculated as functions of ρ\rho and TT.Comment: 16 pages, 6 figure

    Thermal Duality and Hagedorn Transition from p-adic Strings

    Full text link
    We develop the finite temperature theory of p-adic string models. We find that the thermal properties of these non-local field theories can be interpreted either as contributions of standard thermal modes with energies proportional to the temperature, or inverse thermal modes with energies proportional to the inverse of the temperature, leading to a "thermal duality" at leading order (genus one) analogous to the well known T-duality of string theory. The p-adic strings also recover the asymptotic limits (high and low temperature) for arbitrary genus that purely stringy calculations have yielded. We also discuss our findings surrounding the nature of the Hagedorn transition.Comment: 4 pages and 4 figure

    On Quantum Nature of Black-Hole Spacetime: A Possible New Source of Intense Radiation

    Get PDF
    Atoms and the planets acquire their stability from the quantum mechanical incompatibility of the position and momentum measurements. This incompatibility is expressed by the fundamental commutator [x, p_x]=i hbar, or equivalently, via the Heisenberg's uncertainty principle Delta x Delta p_x sim hbar. A further stability-related phenomenon where the quantum realm plays a dramatic role is the collapse of certain stars into white dwarfs and neutron stars. Here, an intervention of the Pauli exclusion principle, via the fermionic degenerate pressure, stops the gravitational collapse. However, by the neutron-star stage the standard quantum realm runs dry. One is left with the problematic collapse of a black hole. This essay is devoted to a concrete argument on why the black-hole spacetime itself should exhibit a quantum nature. The proposed quantum aspect of spacetime is shown to prevent the general-relativistic dictated problematic collapse. The quantum nature of black-hole spacetime is deciphered from a recent result on the universal equal-area spacing [=lambda_P^2 4 ln(3)] for black holes. In one interpretation of the emergent picture, an astrophysical black hole can fluctuate to sqrt{pi/ln(3)} approx 1.7 times its classical size, and thus allow radiation and matter to escape to the outside observers. These fluctuations I conjecture provide a new source, perhaps beyond Hawking radiation, of intense radiation from astrophysical black holes and may be the primary source of observed radiation from those galactic cores what carry black hole(s). The presented interpretation may be used as a criterion to choose black holes from black hole candidates.Comment: This essay received an "honorable mention" in the 1999 Essay Competition of the Gravity Research Foundation - Ed. Int. J. Mod. Phys. D (1999, in press). For Joseph Knech

    Looping on the Bloch sphere: Oscillatory effects in dephasing of qubits subject to broad-spectrum noise

    Full text link
    For many implementations of quantum computing, 1/f and other types of broad-spectrum noise are an important source of decoherence. An important step forward would be the ability to back out the characteristics of this noise from qubit measurements and to see if it leads to new physical effects. For certain types of qubits, the working point of the qubit can be varied. Using a new mathematical method that is suited to treat all working points, we present theoretical results that show how this degree of freedom can be used to extract noise parameters and to predict a new effect: noise-induced looping on the Bloch sphere. We analyze data on superconducting qubits to show that they are very near the parameter regime where this looping should be observed.Comment: 4 pages, 3 figure

    Temperature square dependence of the low frequency 1/f charge noise in the Josephson junction qubits

    Full text link
    To verify the hypothesis about the common origin of the low frequency 1/f noise and the quantum f noise recently measured in the Josephson charge qubits, we study temperature dependence of the 1/f noise and decay of coherent oscillations. T^2 dependence of the 1/f noise is experimentally demonstrated, which supports the hypothesis. We also show that dephasing in the Josephson charge qubits off the electrostatic energy degeneracy point is consistently explained by the same low frequency 1/f noise that is observed in the transport measurements.Comment: 4 pages, 2 figure

    The Hopf Skyrmion in QCD with Adjoint Quarks

    Full text link
    We consider a modification of QCD in which conventional fundamental quarks are replaced by Weyl fermions in the adjoint representation of the color SU(N). In the case of two flavors the low-energy chiral Lagrangian is that of the Skyrme-Faddeev model. The latter supports topologically stable solitons with mass scaling as N^2. Topological stability is due to the existence of a nontrivial Hopf invariant in the Skyrme-Faddeev model. Our task is to identify, at the level of the fundamental theory, adjoint QCD, an underlying reason responsible for the stability of the corresponding hadrons. We argue that all "normal" mesons and baryons, with mass O(N^0), are characterized by (-1)^Q (-1)^F =1, where Q is a conserved charge corresponding to the unbroken U(1) surviving in the process of the chiral symmetry breaking (SU(2) \to U(1) for two adjoint flavors). Moreover, F is the fermion number (defined mod 2 in the case at hand). We argue that there exist exotic hadrons with mass O(N^2) and (-1)^Q (-1)^F = -1. They are in one-to-one correspondence with the Hopf Skyrmions. The transition from nonexotic to exotic hadrons is due to a shift in F, namely F \to F - {\cal H} where {\cal H} is the Hopf invariant. To detect this phenomenon we have to extend the Skyrme-Faddeev model by introducing fermions.Comment: 18 pages, 3 figures; v.2: a reference and a comment added; v.3: two comments added, figures improve

    Nature of 45 degree vortex lattice reorientation in tetragonal superconductors

    Full text link
    The transformation of the vortex lattice in a tetragonal superconductor which consists of its 45 degree reorientation relative to the crystal axes is studied using the nonlocal London model. It is shown that the reorientation occurs as two successive second order (continuous) phase transitions. The transition magnetic fields are calculated for a range of parameters relevant for borocarbide superconductors in which the reorientation has been observed

    The puzzle of 90 degree reorientation in the vortex lattice of borocarbide superconductors

    Full text link
    We explain 90 degree reorientation in the vortex lattice of borocarbide superconductors on the basis of a phenomenological extension of the nonlocal London model that takes full account of the symmetry of the system. We propose microscopic mechanisms that could generate the correction terms and point out the important role of the superconducting gap anisotropy.Comment: 4 pages, 2 eps figure
    corecore